

An innovative machine learning model for short term weather prediction based on radar data Andrei Mihai

Teaching Assistant @ Computer Science, UBB

Research part of the WeaMyL project

- Collaboration between:
 - Babeş-Bolyai University (BBU)
 - Romanian National Meteorological Administration (ANM)
 - Norwegian Meteorological Institute (MET)
- Major goal: provide an efficient, seamless nowcasting platform which will be integrated with national warning systems

Norway

grants

Unitatea Executivă pentru Finanțarea Învățământului Superior, a Cercetării, Dezvoltării și Inovării

Weather nowcasting

- Weather Nowcasting: short-term weather prediction.
- Usually defined as forecasts for the next **0 to 6 hours**.
- Weather nowcasting:
 - especially useful for *severe weather* and *storm tracking*
 - needed for relevant early warnings
 - a *difficult* task for meteorologists

Radar Data

• Radar output:

- Base products: Reflectivity, Velocity
- *Derived products*: vertically integrated liquid, one-hour precipitation etc.
- One full scan every 6 minutes

Reflectivity:

- estimates the size of water droplets
- expressed in decibels relative to the reflectivity factor Z (dBZ)
- can be used to derive the rainfall rate

Current research goal: Predict radar data for the purpose of weather nowcasting.

- Predict reflectivity data most helpful for meteorologists for estimating the severity of a storm.
- Reflectivity at **the lowest elevation angle** is the most relevant.
- From the data at the **current step** predict the data at **next step**.

Prediction as classification:

For a specific location, it is predicted if the radar value at that location will be higher or lower than a certain threshold τ

Autoencoders

- Are a type of Deep Neural Networks
- Learn *low dimensional representations* that capture the relevant characteristics of the input data

Figure: Abstract representation of an Autoencoder

AutoNowP - Architecture

Cropping2D

Figure: Architecture of one AutoNowP convolutional autoencoder.

AutoNowP-Data Model

- In example on the right:
 - Highlighted instance at time *t* with location (3,3)

20	30	10	15	10	
15	15	10	20	5	
20	10	15	20	25	
10	5	10	10	20	
15	5	10	15	20	

15510151025155102001010101510251551501550

- In blue: the corresponding data grid
- In red: the corresponding label

Figure: The data grid at time stamp *t*-1. In blue is the neighbourhood of the location / = (3, 3) of diameter d = 3. Figure: The data matrix at time stamp t. In red is the value of R at location /=(3,3).

AutoNowP - Overview

- CA_{+/}: Convolutional autoencoder for positive/negative values
- L_{+/-}: reconstruction loss for the test sample by the CA_{+/-}
 (loss is Mean Squared Error MSE)
- $p_{+/-}$: probability that the test sample is in the positive/negative class

#InspireTech

Computing Probabilities

$$p_{+}(q) = 0.5 + \frac{MSE_{-}(\hat{q}, q) - MSE_{+}(\hat{q}, q)}{2 \cdot (MSE_{-}(\hat{q}, q) + MSE_{+}(\hat{q}, q))}$$

$$p_- = 1 - p_+(q)$$

where:

- q : query sample
- $p_{+/-}$: probability that the query sample is in the positive/negative class
- $MSE_{+/-}(\hat{q}, q)$: MSE between q and \hat{q} the reconstruction of q by the autoencoder CA_{+/-}

Case study

- Dataset:
 - Data collected over central Romania
 - Single polarization 458 S-band Weather Surveillance Radar 98 Doppler (WSR-98D)
 - Full volume scan every 6 minutes
 - radar data gathered from **20** days from June 2010, 2017, 2018
- Properties:
 - 9,003,688 instances
 - 3.44% in the positive ("+") class
 - 96.56% in the negative ("-") class

Methodology - preprocessing

- Split into positive/negative class depending on threshold $\boldsymbol{\tau}$
 - We tested with $\,\tau\,\,$ values 10, 20 and 30 $\,$
- Normalize dataset:

$$R'(l,t) = \frac{R(l,t) - R_{min}}{R_{max} - R_{min}}$$

where:

- R(l, t) : the value of Reflectivity (R) at time t and location l
- •R'(l, t) : is the normalized value of R at time t and location l
- R_{min} : is the minimum value in the domain of R
- R_{max} : is the maximum value in the domain of R

Methodology - 3-Fold Cross Validation

- 1. Split into training, validation datasets
 - Training and validation datasets are used while training the network models (CA₊, CA₋)
 - Testing is used for evaluating the model
 - 47% used for training, 20% used for validation, 33% used for testing
- 2. Used multiple folds:
 - From the entire set select testing dataset multiple times
 - Use the rest for training/validation

Evaluation

- Metrics used:
 - Based on Confusion Matrix (True positives, True negatives, False positives, False Negatives)
 - Critical success index (CSI), True skill statistic (TSS), Probability of detection (POD), PPV, NPV, Specificity, AUC, AUPRC

• Using folds results:

- Computing the mean and standard deviation for the results.
- Compute the 95% Confidence intervals (multiply standard deviation with critical value 1.96)
- Confidence intervals shows us the reliability of the results

Results per threshold

Т	CSI	TSS	POD	PPV	NPV	Spec	AUC	AUPRC	
	0.615	0.861	0.876	0.674	0.996	0.985	0.931	0.775	
10	±	±	±	±	±	±	±	±	
	0.018	0.012	0.012	0.017	0.001	0.002	0.006	0.013	
	0.425	0.471	0.474	0.810	0.989	0.997	0.736	0.642	
20		±	±	±	±	±	±	±	
	0.072	0.091	0.092	0.015	0.001	0.001	0.046	0.039	
	0.151	0.157	0.157	0.812	0.993	1.000	0.579	0.485	
30		±	±	±	±	±	±	±	
	0.046	0.051	0.028	0.031	0.001	0.000	0.014	0.007	

Table: Experimental results for different thresholds, with 95% CI

Comparison to other classifiers

	Model	CS/	TSS	POD	PPV	NPV	Spec	AUC	AUPRC
• Table: Comparative	AutoNowP	0.615	0.861	0.876	0.674	0.996	0.985	0.931	0.775
		±	<u>±</u>	<u>+</u>	±	<u>+</u>	±	<u>+</u>	<u>+</u>
results between		0.018	0.012	0.012	0.017	0.001	0.002	0.006	0.013
AutoNowPond other	Logistic	0.672	0.752	0.757	0.857	0.992	0.996	0.876	0.807
	Regression	<u>±</u>	±	<u>+</u>	±	±	±	<u>+</u>	<u>+</u>
classifiers.		0.012	0.013	0.013	0.005	0.001	0.000	0.007	0.008
	Linear Support	0.685	0.778	0.783	0.845	0.992	0.995	0.889	0.814
	Vector Classifier	<u>±</u>	±	±	±	±	±	±	<u>+</u>
95% Cls are used for	(SVC)	0.012	0.007	0.007	0.015	0.000	0.000	0.003	0.009
the regulte	Decision	0.574	0.725	0.734	0.724	0.991	0.990	0.862	0.729
life results.	Trees	±	±	<u>+</u>	±	±	±	±	<u>+</u>
		0.007	0.004	0.006	0.012	0.001	0.002	0.002	0.006
	Nearest	0.571	0.793	0.807	0.662	0.993	0.986	0.896	0.735
	Centroid	<u>±</u>	±	<u>+</u>	±	±	±	±	<u>±</u>
	Classification	0.006	0.013	0.013	0.015	0.001	0.001	0.006	0.003

Conclusions & Future Work

We presented the idea of using machine learning methods in the field of short term weather forecasting - weather nowcasting. We presented a novel machine learning technique - the AutoNowP model, which uses two autoencoders to make radar data predictions.

Future Work:

- Multi class classification
- Using multiple products
- Considering other weather data beyond radar data

Thank you!

Questions?

10th Edition | 9th - 10th of November 2022 | Cluj Innovation Park

