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Abstract: One of the hottest topics in today’s meteorological research is weather nowcasting, which
is the weather forecast for a short time period such as one to six hours. Radar is an important data
source used by operational meteorologists for issuing nowcasting warnings. With the main goal
of helping meteorologists in analysing radar data for issuing nowcasting warnings, we propose
NowDeepN, a supervised learning based regression model which uses an ensemble of deep artificial
neural networks for predicting the values for radar products at a certain time moment. The values
predicted by NowDeepN may be used by meteorologists in estimating the future development of
potential severe phenomena and would replace the time consuming process of extrapolating the
radar echoes. NowDeepN is intended to be a proof of concept for the effectiveness of learning from
radar data relevant patterns that would be useful for predicting future values for radar products
based on their historical values. For assessing the performance of NowDeepN, a set of experiments
on real radar data provided by the Romanian National Meteorological Administration is conducted.
The impact of a data cleaning step introduced for correcting the erroneous radar products’ values is
investigated both from the computational and meteorological perspectives. The experimental results
also indicate the relevance of the features considered in the supervised learning task, highlighting that
the radar products’ values at a certain geographical location at a time moment may be predicted from
the products’ values from a neighboring area of that location at previous time moments. An overall
Normalized Root Mean Squared Error less than 4% was obtained for NowDeepN on the cleaned radar
data. Compared to similar related work from the nowcasting literature, NowDeepN outperforms
several approaches and this emphasizes the performance of our proposal.

Keywords: weather nowcasting; machine learning; deep neural networks; autoencoders; Principal
Component Analysis

1. Introduction

Weather nowcasting [1,2] refers to short-time weather prediction, namely weather
analysis and forecast for the next 0 to 6 h. Nowadays, the role of nowcasting in crisis
management and risk prevention is increasing, as more and more severe weather events
are expected [3]. Large volumes of meteorological data, including radar, satellite and
weather stations’ observations, are held by meteorological institutes and available for
analysis. Radars and weather stations are constantly collecting real-time data, while data
about cloud patterns, winds, temperature are continuously gathered by weather-focused
satellites. Thus, there is large amount of meteorological related data available to be analyzed
using machine learning (ML) based algorithms for improving the accuracy of short-term
weather-prediction techniques.
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The World Meteorological Organization (WMO) [4] mentions that “nowcasting plays
an increasing role in crisis management and risk prevention, but its realization is a highly
complex task", the highest difficulties being related to the small-scale nature of convec-
tive weather phenomena. This implies that the Numerical Weather Prediction approach
(NWP) [5] is not feasible and that the forecast has to rely mainly on the extrapolation
of known weather parameters. As meteorological institutes worldwide expect climate
changes including extreme rain phenomena [3], there is an increasing need for accurate and
early warning of severe weather events. Considering the increased number and intensity of
severe meteorological phenomena, predicting them in due time to avoid disasters becomes
highly demanding for meteorologists.

Mainly due to the extremely large volume of data that has to be analyzed in a short
period of time, issuing a nowcasting warning is a complex and difficult task. For operative
meteorologists it is difficult to issue nowcasting warnings, as there is a large volume of
meteorological data (radar, satellite, or other weather stations’ observations) that has to be
analyzed in order to take an appropriate decision. Besides, given the stochastic and chaotic
character of the atmosphere, the evolution of certain weather phenomena are difficult to
predict by human experts. Thus, machine learning (ML) and deep learning [1,2] techniques
are useful for assisting meteorologists in the decision-making process, offering solutions
for nowcasting by learning relevant patterns from large amount of weather data. Most of
the existing operational and semi-operational methods for nowcasting are using the extrap-
olation of radar data and algorithms mainly based on cell tracking. Existing nowcasting
techniques use various data sources which may be relevant for accurate nowcasting, such as:
meteorological data (radar, satellite, meteorological observations) and geographical data
(elevation, exposure, vegetation, hydrological features, anthropic features).

In the current study we used real radar data provided by one of the WSR-98D weather
radars [6] of the Romanian National Weather Administration. Given its capability to
determine the location, size, direction and speed of water droplets, the weather radar is an
essential tool used by meteorologists for nowcasting. For this type of forecast, fast decisions
are imposed, so with the aim of facilitating the analysis in an operative environment, the
data retrieved by the radar is supplied to the meteorologist in the form of coloured maps,
which are easy to assess on a brief overview. On such a map, each pixel corresponds to a
geographical location and its colour represents a certain value of the displayed product.
In a short period of time, commonly under one minute, the meteorologist can locate
potential dangerous storm cells, analyse their vertical structure, relative speed and direction,
the dimension of hail, top of the clouds, and other relevant parameters. At this point, the
operator should appreciate the current phase of the storm and by extrapolating those
values in time, usually up to one hour, predicts the future development (intensity and
area affected) of the storm. Although extrapolating the radar echoes is one of the main
techniques used in nowcasting, it presents weaknesses in terms of processing times and
precision, all related to the skills and experience of the meteorologist.

Most of the currently existing operational and semi-operational methods for nowcast-
ing use the extrapolation of radar data and algorithms mainly based on cell tracking [7–9].
However, an important limitation of existing centroid cell-tracking algorithms lies in the detec-
tion of storms segments having irregular shapes or with variable wind speeds, resulting in
identification and tracking errors.

With the goal of helping meteorologists in analysing radar data for issuing nowcasting
warnings, we are introducing in this paper a supervised learning model NowDeepN based
on an ensemble of deep neural network (DNN) regressors for predicting the values for radar
products which may be used for weather nowcasting. As an additional goal, we aim to
empirically validate the hypothesis that similar values for the radar products at a given
time moment for a certain geographical region are encoded in similar neighborhoods of
that region at previous time moments. The values predicted by NowDeepN for the radar
products at certain time moments may be used by the meteorologist in estimating the future
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development of potential severe phenomena and thus NowDeepN would replace the time
consuming process for the operational meteorologists of extrapolating the radar echoes.

As a proof of concept, NowDeepN is proposed for learning to approximate a function
between past values of the radar products extracted from radar observations and their
future values. Experiments will be performed on real radar data provided by the Roma-
nian National Meteorological Administration and collected on the Central Transylvania
region. Our experimental goal is to obtain an empirical evidence that in both normal and
severe weather conditions the values for a radar product at a given moment in a certain
location are predictable from the values of the neighboring locations from previous time
moments. If this stands, the study may be further improved and extended on a larger scale.
In addition, we are proposing a data cleaning step useful for correcting the erroneous input
radar data. To the best of our knowledge it is the first time an approach such as NowDeepN
is introduced in the nowcasting literature.

To summarize the contribution of this paper, our goal is to answer the following
research questions:

RQ1 Are deep neural networks able to predict the values for a radar product at a given
moment in a certain geographical location from the values of its neighboring
locations from previous time moments? To what extent this holds both for both
normal and severe weather conditions? For answering this research question,
we are introducing a supervised learning model NowDeepN consisting of an
ensemble of DNN-based regressors.

RQ2 How does the data cleaning step introduced for correcting the erroneous input
data impact the predictive performance of the NowDeepN model? In addition,
to what extent is the proposed data cleaning step correlated with the meteorological
perspective?

RQ3 How relevant are the features considered in the supervised learning task? More specifi-
cally, are the radar products’ values from the neighboring area of a certain geographical
location l at time t−1 relevant for predicting the radar products’ values on location l
at time t?

The remainder of the paper is structured as follows. The problem of weather now-
casting, its importance and main challenges are discussed in Section 2. Section 3 discusses
about the fundamental concepts regarding the used machine learning models, whilst a
literature review on supervised learning based weather nowcasting is presented in Section
4. Section 5 introduces our data model and the NowDeepN hybrid model for predicting
the values for radar meteorological products using deep neural networks. Section 6 presents
the experimental setting and results, while an analysis of the obtained results and their
comparison to related work is provided in Section 7. The conclusions of our paper and
future improvements and enhancements of NowDeepN are outlined in Section 8.

2. Weather Nowcasting

The World Meteorological Organization (WMO) [4] mentions that “nowcasting plays
an increasing role in crisis management and risk prevention, but its realization is a highly
complex task", the highest difficulties being related to the small-scale nature of convective
weather phenomena. This implies that the Numerical Weather Prediction approach is not
feasible and that the forecast has to rely mainly on the extrapolation of known weather
parameters. In this context, there is a high need for automated tools and systems supporting
the nowcasting meteorologist, so significant research and development have been carried
out on the topic of nowcasting. In spite of those efforts, both the operative personnel in
nowcasting and the beneficiaries (population, relevant public institutions) are in demand
of even more efficient products and services concerning the weather forecast itself and the
alerting system.

Most of the currently existing operational and semi-operational methods for nowcast-
ing are using the extrapolation of radar data and algorithms mainly based on cell tracking.
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Dixon and Wiener developed a real-time cell tracker named TITAN [10] which is useful for
single cells. A centroid method is used in Reference [10] to identify storm entities in consec-
utive radar scans and estimate future movement of the storm centroid by minimizing a cost
function. SCIT was proposed by Johnson et al. [11] as a cell-tracking algorithm with a more
more complex cell detection method. SCIT used reflectivity thresholds and a distance function
between cells for tracking and estimating future positions. An operational nowcasting tool
called TRT was developed by Hering et al. [7] and used by Meteo Swiss. TRT is a centroid
cell-tracking method using radar data and, in addition to previously mentioned methods, a
multiple sensor system. Jung and Lee [12] introduced a cell-tracking algorithm using fuzzy
logic based on a large set of historic radar data, with the goal of minimizing errors induced by
single features. Germany’s National Meteorological Service DWD uses a nowcasting system
called NowCastMIX developed by James et al. [8]. NowCastMIX employes remote and
ground observations analyzed using fuzzy logic rules. AROME [13] is a small scale numerical
prediction model, which is used by Meteo-France since 2008. Measurements used by AROME
include measurements of the precipitation systems, of low level humidity, low-level wind,
upper level wind and temperature and it provides a forecast for up to 30 h. AROME-NWC [9]
was developed in 2015 on top of AROME, for nowcasting in the range of 0–6 h. The INCA
system [14] was developed specifically for mountainous regions with the goal of forecasting
for precipitation amounts, temperature, wind and convective parameters.

An important limitation of existing centroid cell-tracking algorithms lies in the detec-
tion of storms segments having irregular shapes or with variable wind speeds, resulting in
identification and tracking errors. Errors also occur when storm cells are clustered together
and the algorithm detects them as a single larger cell. In other cases, a single storm cell
is detected as two or more cells at the same horizontal location but on different altitude
levels. Given the high spatial and temporal resolution, NowCastMIX [8] estimates of severe
storms change quickly with the assimilation of new observations, leading to difficulties
in reasoning for meteorologists. It is also prone to an overestimation of the likelihood of
severe convection. According to Reference [14], the INCA system provides high accuracy
for temperature but comparatively low for wind and precipitation given the relatively
low distribution of relevant stations in mountainous regions. The systems described in
References [8,9,14], which are considered to be some of the most performant automated
nowcasting systems at the present time are highly customized for their respective location
and infrastructure, thus their performance and adaptability to other contexts is unclear.

Several industrial players have also shown an interest in the problem of weather
forecasting and have developed various solutions in this direction: IBM Deep Thunder [15]
aims to provide high-resolution weather prediction for a variety of applications, Pana-
sonic Global 4D Weather [16] is a weather forecasting platform that uses Panasonic patented
atmospheric TADMAR sensor collected data, ClimaCell company [17] offers weather fore-
casting solutions tailored for various weather-sensitive industries while TempoQuest [18]
is a company putting on the market a proprietary forecasting software for commercial
users and government agencies.

3. Machine Learning Models Used

This section reviews the fundamental concepts regarding the machine learning models
used in this paper: deep neural networks, autoencoders and t-Distributed Stochastic Neighbor Em-
bedding.

Supervised learning is a subfield of machine learning, dealing with the task of approxi-
mating a mapping from some input domain to some output domain based on input-output
example pairs. The data set consisting of the pre-existing examples of input-output pairs
is called the training data set. A supervised learning algorithm generalizes the training data,
producing a function that, given an input outside of the training data set, can return a close
enough approximation of the correct output. What can be considered a “good enough
approximation” is dependent on the specific problem. The vast quantity of data available
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nowadays as well as the increasing power of computation make the supervised learning
methods an extremely useful tool that can be used in a wide range of domains.

3.1. Deep Neural Networks

Neural network learning methods provide a robust approach to approximating real-
valued, discrete-valued or vector-valued target functions [19]. As a biological motivation,
neural networks have been modeled to be similar to learning systems that we can find
in humans and animals, namely complex networks of neurons. This morphology has
been adopted in computer science, by building densely interconnected systems that have
as building blocks basic units, that take as input a series of real-valued numbers and
produce a single real-valued output [19]. These basic units are called artificial neurons.
Neural networks are suited for problems that deal with noisy, complex data, such as
camera, microphone or sensor data. Their success is due to their similarity to effective
biological systems, that are able to generalize and associate data that has not been explicitly
trained upon during the training phase, and correlate that data to a class where it belongs.
Each neuron of the network has an array of parameters, based on which it processes the
input data, called weights. The weights are adjusted during the training phase, based on
the error of the network. The error represents the difference between the correct output
and the network output. The learning algorithm used for adjusting the weights based on
the error is the backpropagation algorithm.

Unlike classical neural networks, deep neural networks (DNNs) [20] contain multiple
hidden layers and have a large number of parameters which makes them able to express
complicated target functions, that is, complex mappings between their input and out-
puts [21]. Nowadays, DNNs are powerful models in the machine learning literature applied
for complex classification and regression problems from various domains. Machine learn-
ing models, including deep ones, have been successfully applied for developing forecasting
models such as for bank failures [22], prediction markets [23] or gambling [24]. Due to
their complexity, large networks are slow to use and are prone to overfitting, which is a
serious problem in DNNs. Overfitting is a major problem for supervised learning models,
in which the model learns “by heart” the training data, but it does not have the capability
to generalize well on the testing data. An overfit model is discovered through a very
good performance on the training data, but a much lower performance on the testing
set. A possible cause for overfitting in DNNs is the limited training data, as in such cases
the relationships learned by the networks may be the result of sampling noise. Thus,
these complex relationships will exist in the training data but not in real test data [21].
There are various methods for addressing overfitting and reducing it, such as—(1) stopping
the training when the performance on a validation set starts decreasing; (2) introducing
weight penalties through regularization techniques soft weight sharing [25]; (3) applying
cross-validation; (4) extending the data set to include more training examples; and (5)
dropout by randomly dropping neurons and their connections during training.

Regularization stands for an ensemble of techniques that have as purpose the simplifi-
cation of the model, in order to avoid overfitting. Dropout is the regularization technique
applied for neural networks. This process consists in deactivating some neurons during
the training process, forcing the network to achieve the result by using a reduced (and sim-
pler) neuron configuration. During prediction phase, the neurons will be reactivated.
The selection of which neurons to keep active is done by a probability p, chosen arbitrarily,
and dropped out by a probability of 1-p [21].

3.2. Autoencoders and Principal Component Analysis

Autoencoders (AEs) [20] are deep feed forward neural networks which aim to learn
to reconstruct the input, being known in the machine learning literature as self-supervised
learning systems. An AE has two main components: an encoder and a decoder. Assuming
that the input space is Rn, the encoder part learns a mapping f : Rn → Rm, while the
decoder learns the function g : Rm → Rn. If m < n, the network learns to compress
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the input data into a lower dimensional latent space and to reconstruct it based on the
latent representation, by learning the essential characteristics of the data. For avoiding
the overfitting symptom (i.e., simply copying the input to the output), L1 regularization
is applied on the encoded state and the model is called a sparse one. Autoencoders have
been successfully applied in various tasks ranging from image analysis [26] and speech
processing [27] to protein analysis and classification [28,29] .

Principal Component Analysis (PCA) is a dimensionality reduction statistical technique
heavily used in the ML field for tasks such as descriptive data analysis, data visualization
or data preprocessing. It can be seen as an unsupervised learning technique that learns to
represent the data in a new, lower-dimensional, space. Given a data set with n samples
(x1, . . . , xn) and each sample having p attributes (a1, . . . , ap), the PCA algorithm will search
for linear combinations of the variables (i.e., ∑

p
i=1 ai · ci with c1, . . . , cp constants) such that

they are linearly uncorrelated and that the first linear combination has the largest possible
variance, the second has the largest possible variance while being orthogonal on the first
linear combination and so on. These linear combinations are called principal components.
The principal components can be found by computing the eigenvectors and eigenvalues
of the covariance matrix of the data set, where the constants of each linear combination
are given by the eigenvectors and the first linear combination is the one given by the
eigenvector associated with the biggest eigenvalue, and so on [30].

4. Literature Review on Supervised Learning Based Weather Nowcasting

The literature contains various machine learning-based approaches for weather now-
casting. Relevant results obtained recently in predicting short-term weather are summa-
rized in the following and the limitations of the existing solutions are emphasized.

Han et al. [31] use Support Vector Machines (SVM) are trained on box-based features
in order to classify whether or not a radar echo >35 dBZ will appear on the radar within
30 min. The approach uses both temporal and spatial features, derived from vertical wind,
and perturbation temperature. Greedy feature selection was used in order to finally select
these features. The obtained results were around 0.61 Probability Of Detection (POD),
0.52 False Alarm Ratio (FAR), 0.36 Critical Success Index (CSI), which outperformed the
Logistic Regression, J48, Adaboost and Maxent approaches compared against on the same
data set.

Beusch et al. [32] present the COALITION-3 (“Context and Scale Oriented Thunder-
storm Satellite Predictors Development”) algorithm developed by MeteoSwiss. Its goal is
to identify, track and nowcast the position and development of storms in a robust manner.
In order to do this, it employs optical flow methods in combination with winds predicted
by COSMO . In order to separate the movement of the storm from its temporal evolution,
Lagrangian translation is used. Following this, the algorithm estimates future intensifi-
cation and quantifies the probability and severity of the different risks associated with
thunderstorms. This information is extracted by applying machine learning techniques to
a data archive containing observations from the MeteoSwiss dual polarized Doppler radar
system and information from other available systems.

Shi et al. [33] introduce an extension of the Long-Short Term Memory Network
(LSTM), named ConvLSTM. Through experiments done on Moving MNIST and Radar
Echo Dataset, the authors proved their method suitable for spatiotemporal data, having all
the perks which come with a simple LSTM, preserving spatiotemporal features due to the
inherited convolutional structure. Besides the above mentioned aspect other advantages of
ConvLSTM over a basic LSTM are: transitions input-to-state and state-to-state are made in
a convolutional manner, deeper models can produce better results with a smaller number
of parameters. Their proposed architecture contains 2 networks, an encoder composed of 2
ConvLSTM layers and a forecasting network containing the same number of ConvLSTM
layers and an additional 1x1 convolutional layer to generate final predictions.

Kim et al. [34] have also proposed a ConvLSTM-based model for precipitation predic-
tion, but they used three-dimensional and four-channel data unlike Shi et al. [33], who used
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three-dimensional and only one-channel data. The four channels correspond to four alti-
tudes. The proposed model, called DeepRain, predicts, based on radar reflectivity data, the
amount of rainfall on a large scale. The experimental evaluation has proved a decrease of
root mean square error (RMSE) with 23% when compared to linear regression and also a
superior performance as compared to a fully connected LSTM. For rainfall prediction a
RMSE value of 11.31 has been obtained on the test set.

Heye et al. [35] present a practical solution for leveraging the precipitation nowcasting
problem starting from how the data is stored and preprocessed, the deep learning model
used and up to the necessary frameworks and hardware. They used the ConvLSTM with
peepholes cells described by Shi et al. [33] in an architecture inspired from those used for
machine translation. The model is composed of an encoder and a decoder each made
out of four ConvLSTM layers. They experimented with both taking the last step of the
encoder and using attention for transferring information to the decoder, with the former
producing better results in terms of Probability of Detection and Critical Success Rate and
worse for the False Alarm Rate. The decoder uses both the encoded actual reflectivity and
the predicted reflectivity. For accelerating learning, during training the ground truths are
fed back into the decoder, while for evaluation the prior predictions are used. Additionally
they noticed that using as start symbol a tensor of ones which represents high reflectivity
when data is scaled to [0, 1] improves Probability of Detection and Critical Success Rate.

Shi et al. [36] proposed a benchmark for the nowcasting prediction problem and a new
model. The benchmark includes a new data set, 2 testing protocols and 2 measurements
for training, Balanced Mean Squared Error and Balanced Mean Absolute Error. Those mea-
surements were necessary due to an imbalancement between the small amount of times
where potentially dangerous events occured and normal amount of rainfall. The proposed
model, Trajectory Gated Recurrent Unit (TrajGRU), deals better than Convolutional GRU,
with the representation of location variant relationships. TrajGRU allows aggregation of
the state along a learned trajectories. The architecture consist of an encoder and a forecaster
part, inserting between RNN layers downsampling or upsampling operations depending
upon region of the architecture. Their proposal show to be flexible and superior than other
methods. The experiments done on Moving MNIST and precipitation nowcasting HKO-7
dataset emphasize the ability of the model to capture the spatiotemporal correlation.

Narejo and Pasero [37] have proposed a hybrid model combining Deep Belief Net-
works (DBN) with Restricted Boltzmann Machine (RBM) to predict different parameters of
weather—air temperature, pressure and relative humidity—at a local level (i.e., restricted
to a particular geographical area). Initially, the RBMs are trained unsupervisedly. Subse-
quently, the already trained RBMs are stacked to create a DBN. The DBN is supervisedly
trained so as to predict the weather parameters.

Sprenger et al. [38] approached foehn prediction using AdaBoost machine learning
algorithm. The authors motivate the choice of the model through the reasonableness of the
balance between the predictive power, the computational speed and the interpretability
of the results. Being trained with three years of hourly simulations data and using a
modified decision stumps as weaker learners, the model achieved, on a validation data set,
0.88 sensitivity (or probability of detection) and 0.29 probability of false detection.

Yan Ji [39] approached the problem of short-term precipitation prediction from radar
observations, using artificial neural networks. The nowcasting of the rain intensity was
carried out on radar raw data and rain gauge data collected from China from 2010 to
2012. The reflectivity values were extracted from the raw data and were interpolated a
3D rectangular lattice grid of 1km*1km in horizontal direction at the height of 1.5 and
3 km [39]. The collected data set was afterwards used for training the predictive model. A
root mean squared error less than 5 (a minimum of 0.97 and a maximum of 4.7) was obtained.
The experiments have shown a correlation coefficient R in the radar-rainfall estimation
more than 0.6 and indicate that the accuracy rate of 36mins forecast is higher than 50% [39].

In a recent approach, Tran and Song [40] proposed a new loss function for the con-
volutional neural network (CNN) based models used for weather nowcasting. Using a
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computer vision perspective, the authors used Image Quality Assessment Metrics as loss
functions in training, finding that the Structural Similarity function performed better than
both MSE and MAE , especially by improving the quality of the images (i.e., the output
images were much less blurry). However, the best performance was achieved by combining
the Structural Similarity with the MAE and MSE loss functions.

Han et al. [41] proposed a CNN model for convective storms nowcasting based on
radar data. The proposed model predicted whether radar echo values will be higher than
35 dBZ in 30 min, thus modelling the problem as a classification problem. The authors
modeled the input radar data as multi-channel 3D images and proposed a CNN model that
performs cross-channel 3-D convolution. In their model, the output is also an 3D-image,
where each point of the image is a 0 if radar echo is predicted to be ≤ 35dBZ in 30 min and
1 otherwise. A Critical Success Index (CSI) score of 0.44 was obtained.

Yan et al. [42] proposed a model for precipitation nowcasting employing a convo-
lutional architecture using multihead attention and residual connections (MAR-CNN).
The data fed into the network consists of radar reflectivity images on three elevation levels
and other numerical features, such as cloud movement speed. In order to deal with the un-
balanced classes of precipitations, extreme meteorological events have been oversampled.
The proposed model outperformed several deep learning baselines obtained by using only
several of the MAR-CNN components—a dual channel convolutional attention module,
a dual channel convolutional model, a single channel convolutional model, as well as a
GBDT and an SVM.

4.1. Limitations of Existing Approaches

Han et al. [31] highlight that support vector machines require feature reductions in
order to be more accurate, so they might not be able to make use of all the information that a
data set could provide. They also argue for the importance of collecting more data in order
to train the machine learning models better. Another concern is that of feature selection:
while other informative features do exist in the literature, it is not always straightforward
to get them to a form usable for machine learning.

As most works [31,32] show, each system is mostly tested with some form of local real
world data. This does not allow to accurately extrapolate a system’s ability to adapt to
other locations and their specific meteorological events and trends.

A general concern which later on can morph into a limitation is the possible data
imbalance. The performance of the proposed methods can be diminished by the small
number of risky weather conditions compared with normal rain [35,36]. The results from
Reference [33] might not reflect the overall competence of ConvLSTM due to the fact that
Shi et al. used a rather small data set for testing and and a low threshold for rain-rate.
Another limitation mentioned [35] is the fact that predictions tend to lower values of
precipitations in time due to previously less confident predictions being fed back into
the recurrent network. The architecture proposed by Reference [35] is limited to the train
data and does not learn from new data. A concern experienced by others when using the
proposed TrajGRU cell [36] is the speed. The implementation of this operator turns out to
be slower than a simple ConvGRU.

A common limitation of the solutions proposed by Reference [34] and Reference [37]
is compromising the interpretability of the prediction results. The boosting-based solu-
tion [38] alleviate the issue of interpretability, but Dietterich has highlighted in one of his
studies [43] the sensitivity to outliers as a particular disadvantage of boosting. Outliers can
negatively affect the final predictions since they might be excessively weighted during the
boosting steps. An additional limitation of most of the existing solutions is that they do not
combine multiple data sources thus being deprived by an expected enhancement of the
predictive capability [44].
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5. Methodology

We further introduce our NowDeepN approach for weather nowcasting using deep neu-
ral networks. We start by describing in Section 5.1 the raw radar data used in our exper-
iments. Section 5.2 introduces a theoretical model on which NowDeepN is based on,
then Section 5.3 presents our proposal. The section ends with the evaluation measures we
will use for assessing the predictive performance of NowDeepN.

5.1. Radar Data

The experiments in the current study were conducted on real radar data provided by
one of the WSR-98D weather radars [6] of the Romanian National Weather Administration.
The WSR-98D is a type of doppler radar used by meteorological administrations for weather
surveillance, capable of remote detection of water droplets in the atmosphere, that is, clouds
and precipitations, retrieving data on their location, size and motion. The WSR-98D scans
the volume of air above an area over 70,000 square kilometers, and about every 6 min
a complete set of about 30 base and derived products for 7 different elevations is being
collected. The base products are particle reflectivity (R), providing information on particle
location, size and type, and particle velocity (V), supplying information on particle motion,
that is, direction and speed relative to the radar. Both products are available for several
elevation angles of the radar antenna, and for each time step a set of seven data products,
R01-R07 and V01-V07, is delivered, each of them corresponding to a certain tilt of the
antenna. Among the derived products, of particular interest for this study is VIL (vertically
integrated liquid), an estimation of the total mass of precipitation above a certain unit of
area. The data in the NEXRAD Level III files is stored in a gridded format, each point of
the grid corresponding to a geographical location and containing the value of a certain
product at the respective time frame. In the data grid provided by the WSR-98D radar, the
OX axis contains the longitude values, while the OY axis contains the latitude values.

5.2. Data Model

As shown in Section 1, the raw data provided by the radar scans during one day (24h)
on a certain geographic region was exported in the form of a sequence of matrices of mxn
dimensional matrices, one matrix corresponding to a certain time moment t and a certain
meteorological product p (i.e., each element from the matrix represents the value for the
product p at a certain location from the map). As a set Prod of multiple meteorological
products are provided by the radar, the radar data collected at a time t may be visualized
as a 3D data grid in which the OZ axis corresponds to the radar products.

For instance, Figure 1 depicts a sample 3D grid with m = 2 rows, n = 2 columns and
three products (Prod = {R01, R02, R03}) recorded at a certain time stamp t. In the figure,
the values for R01 are in the front matrix, R02 values are in the middle one and R03 in the
matrix behind.
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containing the radar products’ values for a neighboring area of a certain length l surrounding the point
(i,j), at time moment t.
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products, a time stamp t, the location (3,3) (i = 3, j = 3) and a length l of 3 for the neighboring subgrid.
Figure 2 depicts the 3D data grid containing values for R01 (front) and R02 (behind) for each cell from
the data grid surrounding the point (3,3), at time stamp t. The point of interest as well as the 3D data
subgrid of length 3 surrounding the point (3,3) are highlighted.
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During one day, a sequence of 3D data grids (as shown in Figure 1) corresponding
to various time stamps is provided by the radar. Assuming that the radar records data
every 6 min, 240 3D data grids are provided. For a certain location (i,j) on the map, a time
moment t and a set Prod of radar products, we are denoting by Vt(i, j, l, Prod) the vector
representing the linearized 3D data subgrid containing the radar products’ values for a
neighboring area of a certain length l surrounding the point (i,j), at time moment t.
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As an example, let us consider a 5× 5 dimensional data grid, the set Prod = {R01, R02}
of radar products, a time stamp t, the location (3, 3) (i = 3, j = 3) and a length l of 3 for the
neighboring subgrid. Figure 2 depicts the 3D data grid containing values for R01 (front)
and R02 (behind) for each cell from the data grid surrounding the point (3, 3), at time stamp
t. The point of interest as well as the 3D data subgrid of length 3 surrounding the point (3,
3) are highlighted.Appl. Sci. 2020, 0, 5 10 of 26
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The linearized 3D data subgrid (highlighted in Figure 2) is the 18-dimensional vector
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region is obturated and the data is not relevant for the learning process [45]. The radar data is also
prone to different type of errors, meteorological and technical, which implicitly are to be found in the
output data matrix. Meteorological errors (e.g., the underestimation of a particle’s reflectivity) are
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The linearized 3D data subgrid (highlighted in Figure 2) is the 18-dimensional vector
Vt(3, 3, 3, Prod) = (15, 0, 0, 10, 10, 15, 20, 10, 40, 5, 25, 30, 25, 25, 20, 40, 15, 20).

5.3. NowDeepN Approach

The regression problem we are focusing on is the following—to predict a sequence of
values for a set Prod of radar products at a given time moment t on a certain location (i,j)
on the map, considering the values for the neighboring locations of (i,j) at time moment
t−1. NowDeepN approach consists of three main stages which will be further detailed:
data collection and cleaning, training (building the learning model) and testing. NowDeepN
uses an ensemble of DNNs for learning to predict the values of the radar products from the
set Prod based on their historical values. The ensemble consists of np DNNs (np = |Prod|),
one DNN for each radar product. We started from the intuition that using one network
for each product would be more effective than using only one network for predicting all
np values, as the mapping learned by the model should be specific to each radar product.
Thus, we consider that the effectiveness of the learning process will be increased by using
a DNN for each radar product and this will be empirically sustained by the experimental
results (Section 6).

5.3.1. Data Collection and Cleaning

We mention that in the data set used in our case study, values for R and V products are
available for only six elevations (i.e., R01-R04 and R06-R07, V01-V04 and V06-V07). The other
three elevations delivered by the radar are missing since they are not regularly used in
operational services, thus they are not stored in the same format as the rest of the elevations.
The data gathered by the radar and exported as shown in Section 5.1 contains a special value
that represents “No Data". This value is usually represented by−999 but we decided to replace
it with 0 as in most cases this value refers to air particles with 0 reflectivity (i.e., no significant
water droplets). “No data" may also represent air volumes which have returned no signal,
for example if a sector with high reflectivity is between the radar and the respective location.
In this case, replacing it with 0 is also correct, since the entire region is obturated and the
data is not relevant for the learning process [45]. The radar data is also prone to different
type of errors, meteorological and technical, which implicitly are to be found in the output
data matrix. Meteorological errors (e.g., the underestimation of a particle’s reflectivity) are
difficult to identify and eliminate, but some errors occurring during the data conversion have
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been identified for V. For instance, the product V should only contain values from −33 to
33 but we found invalid values which are outside the range [−33, 33], such as −100. From a
meteorological point of view, those erroneous values correspond to radar uncertainties in
evaluating the direction and/or the speed of the particle, and are not taken into account in
operative service since they are punctiform values and are irrelevant to the characteristics of
a region.

We note that the cleaning process which is further described will be applied for the V
values at each degree of elevation (i.e., V01-V04 and V06-V07). Thus, when we are using V
in the following, we refer to the V value at a certain degree of elevation.

For reducing the noise that the invalid values of V represent, a data cleaning step is
proposed. The underlying idea behind the cleaning step is to replace the invalid values of V
on a certain point (i, j) with the weighted average of the valid V values from a neighborhood
of length 13 surrounding the point. The weight associated to a certain neighbor of the
point is inverse proportional to the Euclidian distance between the neighbor and the
point, such that the closest neighbors’ values have more importance in estimating the
value of point. The reason for this cleaning step is that, from a meteorological viewpoint,
V determines the direction and speed of air volumes, thus indicating neighbours that are
more relevant for future value of points. The length 13 surrounding the point represents
about 5 km in the physical world, a distance which commonly determines small gradients
of the meteorological parameters.

Let us consider that (i, j) is the point having an erroneous value for V (e.g., −100) and
this value has to be replaced with an approximation of its real value. We are denoting by
V(x, y) the value of the product V for the point (x,y) and by Nl(i, j) the 2D data subgrid
representing the neighborhood of length l surrounding (i, j). For instance, the neighborhood
N3(3, 3) of length 3 surrounding the point (3, 3) from the data matrix from Figure 3 is
depicted in Figure 4.
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For a certain point (x,y) ∈ Nl(i, j), (x, y) 6= (i, j), we denote by
simij(x, y) = 1√

(x−i)2+(y−j)2
the “similarity” between (i,j) and its neighbor (x,y). Cer-

tainly, the data points closer to (i,j) have a higher similarity degree and their value is more
relevant in the cleaning process. Thus, the value V(i, j) will be approximated with the
weighted average of its valid neighbors, as shown in Formula (1)
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V(i, j) = ∑
(x,y)∈Nl(i,j)
(x,y) valid

(wij(x, y) ·V(x, y)), (1)

where wij(x, y) represent the weight of point (x, y) and is computed as shown in Formula (2)
by normalizing the similarity values simij(x, y) such that ∑

(x,y)∈Nl(i,j)
(x,y)valid

wij(x, y) = 1. We note

that this normalization assures that the approximated V values represent valid ones, that
is, ranging in the interval [−33, 33].

wij(x, y) =
simij(x, y)

∑
(x′ ,y′)∈Nl(i,j)
(x′ ,y′) valid

simij(x′, y′)
. (2)

As previously mentioned, in the cleaning process we considered a length l = 13
for the neighborhood. But, if all data points from the neighborhood of length l (Nl(i, j))
are invalid, we are incrementally increasing l until the neighboring area will contain at
least one valid point. In this case, Formula (1) is applied again using the new length l for
estimating the value V(i, j).

After the data was cleaned as previously shown, the data set is prepared for further
training the NowDeepN regressor, using the representation described in Section 5.2. We de-
note, in the following, by Prod = {p1, p2, . . . , pnp} the set of radar products we are using
in our approach. The radar data set cleaned as previously described is split into np subsets
Dk, 1 ≤ k ≤ np, a data set corresponding to each radar product. A DNN will be afterwards
trained on each Dk, for learning to predict the value of the radar product pk at a time
moment t on a certain geographical location l, based on the radar products’ values from
the neighborhood of l at time t−1.

A training example from a data set Dk, 1 ≤ k ≤ np is in the form < xk, yk >, where:

• an instance xk is the vector Vt−1(i, j, l, Prod) (see Section 5.2) representing the lin-
earized 3D data grid expressing the neighborhood of length l surrounding a point (i,j)
at a time moment t−1;

• the label yk of the instance x is the value for the radar product pk for the location
(i,j) from the map and time moment t (the time moment following the timestamp
corresponding to instance x).

Each data set Dk will contain, for each data point from the analyzed map, examples in
the form < xk, yk > (as previously described). As a preprocessing step before training,
the data sets Dk are normalized to [0,1], using the min-max normalization.

5.3.2. Building the NowDeepN Model

Using the data modelling proposed in Section 5.2 and previously described, we aim
to build a supervised learning model NowdDeepN consisting of an ensemble of DNNs for
expressing np functions (hypotheses) hk, 1 ≤ k ≤ np such that h(xk) ≈ yk.

One of the difficulties regarding the regression problem previously formulated is that
the training data sets Dk built as shown in Section 5.3.1 are highly imbalanced. More specifi-
cally, there are a lot of training instances labeled with zero (i.e., yk = 0) corresponding to
points on the map without specific weather events and a much smaller number of instances
with a non-zero label (i.e., corresponding to a severe meteorological phenomenon). The im-
balanced nature of the data may lead to a regressor which is biased to predict zero values,
as the majority of the training examples used for building the regressor were zero-labeled.
A number of np DNN regressors Nk, 1 ≤ k ≤ np will be trained on the data sets Dk,
such that the model Mk will learn to provide estimates for the radar product pk.
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Each of these DNN regressors outputs a single value which represents the prediction
for the next time step for that regressor’s product. The output value is given by an
linear activation function, while the hidden neurons use the ReLU activation function [46].
The loss we used was the mean squared error and the optimizer used was Adam [47].
For regularization we used one drop-out layer with the default Keras parameters.

5.3.3. Testing

For assessing the performance of NowDeepN, a cross-validation testing methodology
is applied on each of the data sets Dk. The data sets Dk are randomly splitted in 5 folds.
Subsequently, 4 folds will be used for training and the remaining fold for testing and this is
repeated for each fold (5 times).

For each training-testing split, two evaluation measures are used and computed
for each training-testing split: Root mean squared error (RMSE) and Normalized root mean
squared error (NRMSE) [48]. The RMSE computes the square root of the average of squared
errors obtained for the testing instances. The NRMSE represents the normalized RMSE,
obtained by dividing the RMSE value to the range of the output and is usually expressed
as a percentage. The regression related literature indicates NRMSE as a good measure for
estimating the predictive performance of a regressor. Lower values for RMSE and NRMSE
(closer to zero) indicate better regressors. For a more precise evaluation of the results,
the values for the evaluation measures (RMSE and NRMSE) are also computed for the non
zero-labeled instances (RMSEnon−zero, NRMSEnon−zero).

The RMSE and NRMSE values are computed for each data point from the grid (ge-
ographical area) and then are averaged over all grid points. As multiple experiments
(training-testing data splits) are performed, the values for the evaluation measures were
averaged over the 5 runs and a 95% confidence interval (CI) [49] of the mean value is
computed.

6. Experimental Results

Experiments were performed by applying NowDeepN model on real data sets pro-
vided by the Romanian National Meteorological Administration and collected on the
Central Transylvania region, using the methodology introduced in Section 5.

6.1. Data Set

This study uses data provided by the WSR-98D weather radar [6] located in Bobo-
halma, Romania and stored in the NEXRAD Level III format, as described in Section 5.1.
The day used as case study is the 5th of June 2017, a day with moderate atmospheric insta-
bility manifested through thunderstorms accompanied by heavy rain and medium-size
hail. In our study we selected an area from the central Transylvania region (parts of Mureş,
Cluj, Alba and Sibiu counties) representing a grid having the geographical coordinates
(46.076N, 46.725N, 23.540E and 25.064E). In the chosen geographical area, there were two
distinct episodes with intense meteorological events in 5 June 2017: the first one between
approximately 09:00 and 11:00 UTC, and the second one between approximately 12:00
and 17:00 UTC, with the most severe events taking place between 14:00 and 15:00 UTC.
Concerning these phenomena, the National Meteorological Administration issued five
severe weather warnings, code yellow.

The data grid provided by the radar for the selected geographical area at a given
time moment is fit to a matrix. The radar provides one data matrix for each radar product.
As stated in Section 5.1, the radar data is split into multiple time stamps, each time stamp
representing data gathered by the radar every 6 min (the radar takes 6 min to gather the
data for the area). The radar data used in our case study has been recorded between
00:04:04 UTC and 23:54:02 UTC.

In the current study, we are using only 13 products (i.e., np = 13): base reflectivity (R)
of particles on six elevations (R01-R04, R06-R07) velocity (V) on six elevation (V01-V04, V06-
V07) and the estimated quantity of water (VIL) contained by a one square meter column
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of air. Thus, the set of considered radar products is Prod = {R01, R02, R03, R04, R06,
R07, V01, V02, V03, V04, V06, V07, VIL}. Accordingly, NowDeepN ensemble of regressors
will predict 13 values, corresponding to the products previously enumerated. Our study
uses only R, V and VIL products, as they are mostly used by meteorologists for weather
nowcasting.

As mentioned in Section 5.2, we consider each point in the grid an instance. For each
point we consider its neighbours in a certain radius. We decided to select a value of 13
for the length l of the neighborhood surrounding each point (see Section 5.3.1). More ex-
actly, the 2D data subgrid representing the neighborhood for a point is a 13 by 13 matrix.
The reason for choosing 13 as the dimensionality of the neighborhood is that it represents
about 5 km in the physical world, which, from a meteorological view, is a common dis-
tance to determine small gradients. Thus for each instance we are considering a matrix
of 13 by 13 points, each of which have 13 products. Therefore, for each instance we have
13× 13× 13 = 2197 attributes. For each timestamp we have a grid of the size 400× 312.
We only used the instances for which we could get the entire neighbourhood (i.e., where the
neighbourhood matrix would not exceed the limit of the grid), thus obtaining 116.400 in-
stances per timestamp. The day used as a case study contains 231 timestamps, thus of our
data set consists of 26.888.400 instances. The data used in the experiments are publicly
available at http://www.cs.ubbcluj.ro/~mihai.andrei/datasets/nowdeepn/.

6.2. Data Analysis

In order to estimate the impact of the data cleaning step, we analyzed the data set
before and after cleaning. For each of the data products V01, V02, V03, V04, V06 and V07
(which were possibly cleaned) and each time stamp t, 1 ≤ t ≤ 231, we computed the
average values of the radar products for all the cells from the analyzed grid. Additionally,
the average of the mean values for all V products and all the cells from the grid were
calculated for each time stamp.

Figure 5 comparatively depicts the variation of the mean V value with respect to each
time stamp (ranging from 1 to 231) for three cases: (1) before the cleaning step; (2) before
cleaning but ignoring the invalid values; and (3) after the cleaning. A step of 10 was selected
on OX axis (i.e., an hour). Graphical representations similar to the ones from Figure 5 were
created for V01-V07, as well. The time series plots for V01 and V06 are illustrated in Figures
6 and 7, respectively.

Analyzing the plots from Figures 5–7 and comparing the evolution of values before
cleaning (red coloured), before cleaning but ignoring invalid values (blue coloured) and
after cleaning (green coloured) we observe the following. At lower degrees of elevations
(see the plot for V01 from Figure 6) there are much more invalid values than at higher
degrees of elevation (see the graph for V06 from Figure 7). Besides, from a meteorological
viewpoint, higher degrees of elevation are related to higher altitudes, implying a less
chaotic air circulation, leading to more precise radar soundings. The impact of the data
cleaning step is noticeable from the time series plots, as for V01 the graph before data
cleaning significantly differs from the graph after cleaning. The two graphs have very
different shapes and this suggests that the noise introduced in data after the cleaning step
is considerably smaller than the noise existing in data before replacing the invalid V values.
We note that a similar situation has been observed for V02-V04 as well.

Much more, the time series plots before data cleaning but ignoring invalid values (blue
coloured) resembles to the graph after the invalid values were cleaned (green coloured).
Figure 8 depicts a zoomed-in version of the graphs from the upper side of Figure 6 (the time
series before cleaning but ignoring the invalid values and time series after cleaning).
At higher degrees of elevation (V06), there is no significant difference between the evolution
of V values before and after cleaning (the red coloured and green coloured plots from
Figure 7). The shapes of the two plots are very similar for V06 and this was also observed
for V07.

http://www.cs.ubbcluj.ro/~mihai.andrei/datasets/nowdeepn/
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Figure 5. Time series plot for mean V values: ignoring invalid values, before and after cleaning.
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Figure 6. Time series plot for average V01 values: ignoring invalid values, before and after cleaning.
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All the previous observations lead us to the hypothesis that the cleaning step would
impact the overall performance of NowdDeepN, and this should be visible at least at lower
degrees of elevations for V.

6.3. Results

This section presents the experimental results obtained by applying NowDeepN ap-
proach on the data set described in Section 6.1. For the DNNs used in our experiments,
the implementation from the Keras deep learning API [50] using the Tensorflow neural
networks framework was employed. The code is publicly available at Reference [51]. Given
the fact that our data was quite high-dimensional, as mentioned in Section 6.1, we needed
a relatively complex neural network. Each of The DNN regressors in the ensemble con-
tains 12 hidden layer, with the following number of neurons: one layer with 200 neurons,
one layer with 2000 neurons, 5 layers with 500 neurons and 5 layers with 100 neurons.
These networks were trained for 30 epochs using 1024 instances in a training batch.

As stated at the beginning of the paper, we aim to answer research question RQ1
by assessing the ability of NowDeepN to predict the values for the radar products at
a given moment in a certain geographical location from the values of its neighboring
locations from previous time moments. Besides, we intend to analyze how correlated are
our computational findings with the meteorological evidence. Table 1 depicts the obtained
results together with their 95% CI. The columns of the table illustrate the evaluation
measures computed for all 13 products (second column), the average values computed
for all six R products (third column), the average values computed for all six V products
(fourth column) as well as for VIL (fifth column). In order to allow an easier interpretation
of the results from a meteorological perspective, we also illustrate in Table 1 the Mean of
Absolute Errors (the average of the absolute errors obtained for the testing instances) for all
instances (MAE), as well as only for the non-zero labeled instances (MAEnon−zero).

Table 1. Experimental results obtained using NowDeepN. 95% CI are depicted.

Evaluation All 13 All R All V VILMeasure Products Products Products

MAE 0.58 ± 0.02 0.76 ± 0.03 0.41 ± 0.02 0.53 ± 0.02

RMSE 2.25 ± 0.12 2.73 ± 0.17 1.44 ± 0.07 1.62 ± 0.10

NRMSE 3.27% ± 0.17% 3.91% ± 0.24% 2.15% ± 0.11% 2.32% ± 0.14%

MAEnon−zero 4.02 ± 0.12 5.51 ± 0.17 2.73 ± 0.12 2.89 ± 0.04

RMSEnon−zero 5.93 ± 0.14 7.63 ± 0.15 3.50 ± 0.15 3.9 ± 0.18

NRMSEnon−zero 8.60% ± 0.21% 10.91% ± 0.22% 5.22% ± 0.22% 5.63% ± 0.26%

From a meteorological point of view, the MAE for both all and non-zero instances is a
satisfactory one, meaning that the predicted value is on the same level or on a neighbouring
level on the product value scale.

The following two figures depict a comparison between the real data gathered by
the radar (Figure 9) and the prediction made by NowDeepN (Figure 10). The timestamp
of the comparison was chosen so that there was significant meteorological activity (14:37
UTC is in the middle of the meteorological event, as described in the data set used in
Section 6.1). The figures depict product R01, chosen because it is one of the most relevant
radar products for nowcasting, as it provides information on the precipitation and usually
contains more non-zero data than upper levels. Figure 9 represents the real data collected
by the radar, while Figure 10 represents the predicted data, given the real data at 14:31:15
UTC. The figures represent the (real or predicted) values of R01 over a geographical area.
Each pixel in the images represents a geographical location of roughly 1 km2. The values
on axes OX and OY represent the coordinates of a pixel inside the image, relative to the (0,0)
origin in the upper-left corner. While the values along the axes do not represent actual
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longitude and latitude values, the OY axis runs along the latitudes and OX axis runs along
the longitudes (the (0,0) origin of the images being the most north-western point of the
geographical area the image represents).

Figure 9. Real data for product R01 (reflectivity at the lowest elevation angle, measured in dBZ with
values ranging form 0 to 70) at 14:37:22 UTC.

Figure 10. Predicted data for product R01 (reflectivity at the lowest elevation angle, measured in dBZ
with values ranging form 0 to 70) at 14:37:22 UTC.

In Table 1 an average NRMSE of less than 4% is reported for the R products, which
would entail a close resemblance between the predicted data and the real data, resemblance
which can be observed in the comparison between the Figures 9 and 10. It can be observed
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that the predicted pattern closely follows the real pattern, closely matching the shape and
intensity of R01 in the studied area. There are, however, visible limitations of the prediction.
There is a clear smoothing effect present, very clearly seen around areas where there are
scattered points with non-zero values, the prediction tends to smooth out the area between
them, resulting in a much larger areas of close to 0 non-zero values (colored in dark green)
than in the real data. This effect can be also seen on areas with points with higher values,
for example, around the point at roughly (170, 230), where in the real data present some
ragged shape of higher intensity points, but the predicted data would present the area as
a smooth shape, much less ragged, the space between the higher intensity points being
predicted with a similar intensity. Another example can be seen at (110, 120), where, in the
real data, there is a small shape with extremely high values; but in the predicted data, while
the real shape is largely retained, the intensity is greatly diminished. Still, these kinds of
effects are on a small scale relative to the entire area represented by the figure. Smoothing
may be responsible for the higher NRMSE obtained for non-zero values, as areas with
higher values are more affected by smoothing than areas with zero values.

7. Discussion

In this section we are analysing the performance of NowDeepN approach in order
to answer research questions RQ2 and RQ3. First, we are going to assess the impact of
the data cleaning step on the performance of NowDeepN (Section 7.1) and to estimate the
relevance of the manually engineered features used in the training process (Section 7.2).
Then, we continue in Section 7.3 with comparing our results with similar results obtained
in the literature.

7.1. Impact of the Data Cleaning Step

As previously shown in Section 6.1, the training data set contains instances with errors,
particularly at lower degrees of elevation. Obviously, the noisy training data may affect
the performance of the learning task. In this regard, a data cleaning step motivated by the
meteorological perspective has been introduced in Section 5.3.1 for replacing the invalid
values in the data set which were identified mostly for the product V at lower degrees of
elevation (V01-V04). The analysis we performed on data after it was cleaned (Section 6.2)
led us to the hypothesis that the cleaning step would impact the overall performance
of NowdDeepN, and this should be visible at least at lower degrees of elevations for V.
Intuitively, as the data cleaning is correlated with the meteorological evidence, we expect a
better performance of NowDeepN, particularly at lower degrees of elevation.

In order to empirically validate the hypothesis that the cleaning step improves the pre-
dictive performance of NowDeepN, we have evaluated the model trained on the uncleaned
data set, using the same methodology introduced in Section 5.

Table 2 depicts the results obtained applying NowDeepN on the uncleaned data.
Comparing the results with those obtained on the cleaned data (Table 1) we observe
an improvement in the predictive performance of NowDeepN achieved on the cleaned
data. The last column from the Table 2 illustrates the improvement obtained using the
cleaning step, computed for each evaluation measure E (i.e., RMSE, NRMSE, RMSEnon−zero,
NRMSEnon−zero) for all 13 radar products. The improvement is computed as Euncleaned−Ecleaned

Euncleaned
.

Figure 11 depicts a very similar situation as Figure 10, the only difference being that
the image represents values for R01 predicted by NowDeepN trained on uncleaned data.
Similar to Figures 9 and 10, the image in Figure 11 represents a geographical area with
each pixel representing a geographical location of roughly 1 km2. Again, the values on
axes OX and OY represent the coordinates of pixels inside the image relative to the (0,
0) origin in the upper-left corner, while axis OX runs along the longitudes and axis OY
runs along the latitudes, with the (0, 0) origin being the most north-western point in the
geographical area represented by the image. The most erroneous values are on the V
products, yet the errors can still greatly affect the other products such as R01, presented in
the figure. While in the predicted data the shapes and intensities are largely retained as
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in the real data, some significant anomalies can be observed. For example, around the
point at (140, 250) in the predicted data can be seen an area of higher valued points that is
completely absent int the real data, with no means to attribute it to the smoothing effect.
Also, in the upper right corner at around (10, 380), there can be seen in the real data
a significant shape with quite high values at the interior that is simply removed in the
predicted data, although the surrounding shapes are much better represented. There are
other such anomalies that cannot be explained by the smoothing effect that appear in the
data predicted by NowDeepN trained on uncleaned data. None of these anomalies appear
on the data predicted NowDeepN trained on cleaned data. This suggests that there were
some erroneous values of V in those areas that also affected how NowDeepN predicted the
other products, and thus, cleaning the data yields much better results.

Figure 11. Predicted data, using the model trained on uncleaned data, for product R01 (reflectivity at
the lowest elevation angle, measured in dBZ with values ranging form 0 to 70) at 14:37:22 UTC.

7.2. Relevance of the Used Features

We aim to further analyze the NowDeepN approach by determining the relevance
of the features used in the training process. More precisely, our goal is to examine if the
radar products’ values from a neighborhood of a certain location at time t are suitable for
predicting the products’ values at time t+1, for the same location. The analysis from this
section is conducted for answering question RQ3.

For determining the significance of the features, we are comparing the results of
NowDeepN using the original set of features with those obtained by applying NowDeepN
after the prior application of a feature extraction step. Two feature extractors will be applied
on the original set of features, for reducing the dimensionality of the input data.
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Table 2. Experimental results obtained using NowDeepN on the uncleaned data. 95% CI are used for the results. The last column
illustrates the improvement achieved applying NowDeepN on the cleaned data, considering all 13 radar products.

Evaluation All 13 All R All V VIL Improvement (%)
Measure Products Products Products (Cleaning Step)

RMSE 4.98 ± 0.06 4.97 ± 0.10 3.99 ± 0.07 5.24 ± 0.17 55%

NRMSE 7.27% ± 0.09% 7.10%± 0.15% 5.95% ± 0.10% 7.49% ± 0.24% 55%

RMSEnon−zero 10.05± 0.40 9.38 ± 0.23 10.88± 0.71 9.10 ± 0.31 41%

NRMSEnon−zero 14.68%± 0.59% 13.40%± 0.33% 13.24%± 1.06% 13.00% ± 0.44% 41%

1. A sparse denoising AE is applied on the original data using a dimensionality of
250 for the hidden state. The AE’s latent space representation (i.e., the result of the
encoding part) will be further used (as a lower-dimensional representation of the
input data) by NowDeepN for the prediction task. For the AE implementation we
have used the following model: 7 hidden layers, 3 hidden layers for encoding (1000,
750, 500 neurons respectively), 250 neurons on the encoding layer and 3 hidden layers
for decoding (500, 750, 1000 neurons respectively), all of these layers using the ReLU
activation function, with the exception of the encoding layer, which used the linear
activation function; the output size is equal to the input size (2197 neurons), with the
linear activation function; using mean squared error loss and the Adam optimizer;
the network was trained for 30 epochs using a batch of 1024 instances.

2. The PCA algorithm is applied for a linear dimensionality reduction of the input data
into a 250 dimensional space. For PCA we have used the existing scikit-learn Python
implementation of the algorithm using 250 principal components and the default
values for the other parameters [52].

Table 3 depicts the results obtained applying NowDeepN with a previous feature
extraction step (AE/PCA). Comparing the results with those obtained without applying a
feature extraction step (Table 1) we observe an improvement in the predictive performance
of NowDeepN achieved without a prior feature extraction step. The last column from the
table illustrate the improvement obtained by NowDeepN on the original data (computed
as the difference between the measure on the original and on the reduced data divided to
the value obtained on the reduced data).

The results depicted in the last column from Table 3 empirically demonstrate that the
features (i.e., the radar products’ values from a neighborhood of a certain location at time
t) used in training NowDeepN are relevant for predicting the radar products’ values at
time t+1, for the same location. The relevance of the features is validated by the fact that
a dimensionality reduction technique (AE/PCA) applied prior to the classification using
NowDeepN does not improve the learning performance. The last column from Table 3 also
reveals that AEs preserve better than PCA the characteristics of the data when reducing its
dimensionality, which is expectable as AEs perform a non-linear mapping whilst PCA a
linear one.

7.3. Comparison to Related Work

The literature review from Section 4 revealed various approaches developed in the
nowcasting literature using machine learning methods.
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Table 3. Experimental results obtained using NowDeepN with a previous feature extraction step. 95% CI are used for the results. The
last column illustrates the improvement achieved applying NowDeepN on the original data, considering all 13 radar products.

Feature
Extraction

Evaluation
Measure

All 13
Products

All R
Products

All V
Products

VIL Improvement (%)
without Feature

Extraction

AE

RMSE 2.40 ± 0.07 2.93 ± 0.08 1.51 ± 0.05 1.76 ± 0.11 6%

NRMSE 3.49% ± 0.10% 4.19% ± 0.12% 2.26% ± 0.08% 2.51% ± 0.16% 6%

RMSEnon−zero 6.75± 0.29 8.81 ± 0.41 3.87 ± 0.14 4.55± 0.49 12%

NRMSEnon−zero 9.79% ± 0.41% 12.58% ± 0.59% 5.78% ± 0.20% 6.49% ± 0.70% 12%

PCA

RMSE 2.76 ± 0.03 3.40 ±0.15 2.16 ±0.09 2.52 ±0.13 18.50%

NRMSE 4.01% ±0.05% 4.86%± 0.22% 3.22%±0.14% 3.60% ±0.19% 18.47%

RMSEnon−zero 7.56 ± 0.31 9.80± 0.79 5.58 ±0.19 5.94 ±0.37 21.55%

NRMSEnon−zero 10.96% ±0.45% 14.01% ±1.13% 8.33%± 0.29% 8.49% ±0.53% 21.54%

We start the comparison between NowDeepN and related work by comparing our
model to a simple baseline model, the linear regression (LR). For an exact comparison,
the data model used for NowDeepN (Section 5.2) was used for the LR model as well.
By applying the LR on the dataset described in Section 6.1, an overall RMSE for the non-zero
values (RMSEnon−zero) of 6.094 was obtained. Surprisingly, there is only 3% improvement
achieved by NowDeeP on our data, with a higher improvement on V (about 12%). From a
meteorological point of view, the minor improvement in reflectivity nowcasting (compared
to the LR model) is probably determined by the fact that the model is predicting the values
of the radar products for one time step, and on the particular day used in this study the
convective structures detected by the radar display a relatively slow evolution due to
the light to moderate wind, thus no rapid modifications between two radar scans can
be observed in terms of R value or location. Bigger improvements can be observed in
V product values predictions, since the evolution of this product has a more stochastic
character. Future work, dealing with prediction over more time steps, should display
greater improvements compared to the benchmark LR model.

Even if there are numerous machine learning-based methods developed for nowcast-
ing purposes, there are few methods focused on radar base products’ values nowcasting,
such as reflectivity nowcasting. Most of the related work focus on the precipitation now-
casting problem. We found four approaches having similar goal to our paper, that of
predicting the future values of the radar products’ values based on their historical values.
The approaches from the literature which are the most similar to ours are those proposed by
Yan Ji [39], Han et al. [31,41] and Yan et al. [42]. Even if the data sets used in the previously
mentioned papers and the evaluation methodology differs from ours, we computed the
evaluation measures reported in literature, trying to reproduce as accurately as possible
the experiments from the related work.

The work of Ji [39] is focused on predicting only the reflectivity values which are
further used for precipitation prediction. Experiments are performed only on radar data
collected only for time stamps when storms occurred, disregarding the periods with normal
weather (i.e., for which the R value is 0). Besides the minimum and the maximum values
for the RMSE, the Hit rate (HR) is reported in Reference [39] as the percentage of instances
for which the absolute error (between the predicted and the real value) is less than or equal
to 5. For an accurate comparison with the work of Yan Ji [39], we trained our NowDeepN
model only on the instances labeled with non-zero values for R and was tested only on
non-zero instances. We also note that the evaluation from Reference [39] is performed
only once, without using a cross-validation. Han et al. [31,41] focused on their works on
predicting the R values (using SVM and CNN classifiers), more specifically if they exceed
35 dBZ. Considering that the positive class is the one for which the R values are larger than
35, the authors used three evaluation measures: (1) critical success index (CSI), computed as
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CSI = TP
TP+FN+FP ; (2) probability of detection (POD), POD = TP

TP+FN ; and (3) false alarm rate
(FAR), FAR = FP

FP+TP . The MAR-CNN model proposed for precipitation nowcasting by
Yan et al. [42] used radar reflectivity images on three elevation levels and other numerical
features and provided a RMSE of 7.90 for the predicted reflectivity values.

Table 4 summarizes the comparison between NowDeepN and the related work.
The best values for the evaluation measures are highlighted.

Table 4. Comparison to the work of Yan Ji [39], Han et al. [31,41] and Yan et al. [42].

Model RMSE HR CSI POD FAR

Our
NowDeepN 5.34 0.75 0.64 0.83 0.27

ANN [39] [0.97, 4.7] 0.89 – – –

CNN [41] – – 0.44 – –

SVM [31] – – 0.36 0.61 0.52

MAR-CNN
[42] 7.90 – – – –

Table 4 reveals that NowDeepN outperforms the approaches proposed by Han et al. [31,41]
in terms of CSI, POD and FAR evaluation measures. Overall, in 71% of the cases (5 out of
7 comparisons), the comparison is favorable to NowDeepN. Our proposal is outperformed
only by the work of Yan Ji [39] which reported a better HR and a maximum RMSE slightly
better than ours. This difference may occur due to the following: (1) the data sets used (both as
training and and testing) are different and have particularities due to the geographic area
(country) on which were collected (i.e., China [39] and Romania); (2) the testing data set from
Reference [39] contains data collected on a relatively small area which may lead to a biased
evaluation and an overestimated performance.

As previously mentioned, a lot of work has been carried out in the literature for
precipitation nowcasting. Tran and Song [40] tackled the precipitation nowcasting problem
from a computer vision perspective, by applying certain thresholds on the reflectivity
values (5/20/40 dBZ). In order to measure the performance of NowDeepN (in terms of CSI,
POD and FAR) for the aforementioned thresholds we transformed the predicted values
to predicted classes, by denoting each predicted value lower or equal to a threshold as
being in the negative class and each predicted value higher than the threshold as being
in the positive class. We then applied the same transformation on the ground truth and
computed the measures; following this process for each of the three thresholds (5/20/40
dBZ). Table 5 illustrates the comparison between NowDeepN and the model proposed
by Tran and Song [40]. We mention that Tran and Song [40] provide for each evaluation
measure ranges of values. Since an exact comparison cannot be provided (the datasets
used for evaluation and the input data models are different) our comparison relies only on
the magnitude of CSI, POD and FAR evaluation metrics. The best values obtained for each
reflectivity threshold and evaluation metric are highlighted.

The comparative results from Table 5 highlight that NowDeepN obtained better re-
sults than the model proposed by Tran and Song [40] in 77.7% of the cases (7 out of
9 comparisons). We note the good performance of NowDeepN at higher values for the
reflectivity threshold, which indicate the ability of our model to detect moderate and heavy
precipitation and medium and large hail.
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Table 5. Comparison to the work of Tran and Song [40].

Model Reflectivity
Threshold CSI POD FAR

5 0.6475 0.8055 0.2326
Our NowDeepN 20 0.5386 0.7646 0.3543

40 0.4290 0.6277 0.4245

5 0.6729–0.7069 0.7646–0.8053 0.1579–0.1812
TrajGRU [40] 20 0.2994–0.3208 0.3949 –0.4296 0.4443–0.4815

40 0.0411–0.0549 0.0568–0.0859 0.7539–0.79

8. Conclusions and Future Work

We introduced in this paper a supervised learning based regression model NowDeepN,
which used an ensemble of deep artificial neural network for predicting the values for meteoro-
logical products at a certain time moment based on their historical values. NowDeepN was
intended to be a proof of concept for the feasibility of learning to approximate a function
between past values of the radar products extracted from radar observations and their
future values.

The NowDeepN model consisted of an ensemble of DNNs for radar products’ values
nowcasting. In this ensemble, a DNN model was used for learning to approximate the
value of each radar product at a given time moment and a certain geographical location
from the radar products’ values from the neighborhood of that location at previous time
moments.

Experiments were conducted on real radar data provided by the Romanian National
Meteorological Administration and collected on the Central Transylvania region. The ob-
tained results provided an empirical evidence that in both normal and severe weather
conditions the values for a radar product at a given moment in a certain location are
predictable from the values of the neighboring locations from previous time moments. This
evidence is essential for further using convolutional neural network models for automati-
cally extracting from radar data features which would be relevant for predicting the radar
products’ values at a certain time moment based on their historical values. A data cleaning
step was introduced for correcting the erroneous input radar and its impact on increas-
ing the predictive performance of the NowDeepN model was highlighted. In addition,
the relevance of the features considered in the supervised learning task was empirically
proven. More specifically, the experiments shown that the radar products’ values from the
neighboring area of a certain geographical location l at time t−1 are useful for predicting
the radar products’ values on location l at time t.

The experimental results highlighted that our NowDeepN model has a good perfor-
mance particularly for high values of the reflectivity threshold, which indicate its ability to
detect moderate and heavy precipitation and medium and large hail. While from a mete-
orological point of view, the performance of NowDeepN for predicting radar reflectivity
values one time step ahead is satisfactory, in order to assess its performance compared to
techniques currently employed in weather nowcasting, further development of the model
for multiple time steps (e.g., 5 or 10 time steps, covering 30 or 60 min) is needed.

The experimental evaluation of NowDeepN will be further extended by enlarging the
data set used for training the model. As future plans we aim to investigate convolutional
neural network models [53] as well as supervised classifiers based on relational association
rule mining [54,55] for detecting relationships between the meteorological products’ values
which may distinguish between normal and severe meteorological phenomena. In addi-
tion, we will analyze the possibility to extend the features used in the learning process,
by combining radar data with other features (e.g., geographic and antropic features).
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